Prediction of RNA secondary structure based on helical regions distribution
نویسندگان
چکیده
MOTIVATION RNAs play an important role in many biological processes and knowing their structure is important in understanding their function. Due to difficulties in the experimental determination of RNA secondary structure, the methods of theoretical prediction for known sequences are often used. Although many different algorithms for such predictions have been developed, this problem has not yet been solved. It is thus necessary to develop new methods for predicting RNA secondary structure. The most-used at present is Zuker's algorithm which can be used to determine the minimum free energy secondary structure. However many RNA secondary structures verified by experiments are not consistent with the minimum free energy secondary structures. In order to solve this problem, a method used to search a group of secondary structures whose free energy is close to the global minimum free energy was developed by Zuker in 1989. When considering a group of secondary structures, if there is no experimental data, we cannot tell which one is better than the others. This case also occurs in combinatorial and heuristic methods. These two kinds of methods have several weaknesses. Here we show how the central limit theorem can be used to solve these problems. RESULTS An algorithm for predicting RNA secondary structure based on helical regions distribution is presented, which can be used to find the most probable secondary structure for a given RNA sequence. It consists of three steps. First, list all possible helical regions. Second, according to central limit theorem, estimate the occurrence probability of every helical region based on the Monte Carlo simulation. Third, add the helical region with the biggest probability to the current structure and eliminate the helical regions incompatible with the current structure. The above processes can be repeated until no more helical regions can be added. Take the current structure as the final RNA secondary structure. In order to demonstrate the confidence of the program, a test on three RNA sequences: tRNAPhe, Pre-tRNATyr, and Tetrahymena ribosomal RNA intervening sequence, is performed. AVAILABILITY The program is written in Turbo Pascal 7.0. The source code is available upon request. CONTACT [email protected] or [email protected]
منابع مشابه
RDfolder: a web server for prediction of RNA secondary structure
Prediction of RNA secondary structure is important in the functional analysis of RNA molecules. The RDfolder web server described in this paper provides two methods for prediction of RNA secondary structure: random stacking of helical regions and helical regions distribution. The random stacking method predicts secondary structure by Monte Carlo simulations. The method of helical regions distri...
متن کاملIn Silico and in Vitroinvestigations on cry4aand cry11atoxins of Bacillus thuringiensis var Israelensis
In the present study we attempted to correlate the structure and function of the cry11a (72 kDa) and cry4a (135 kDa) proteins of Bacillus thuringiensis var israelensis. Homology modeling and secondary structure predictions were done to locate most probable regions for finding helices or strands in these proteins. The JPRED (JPRED consensus secondary structure prediction server) secondary struct...
متن کاملAdditional Paper for " Rna Secondary Structure Prediction " Paper Reference
In this paper, the author describes the need for structural analysis of different classes of RNAs and discusses RNAlishapes, a tool/algorithm which facilitates the prediction of a consensus structure of a class of RNA sequences. The algorithm uses extensions of several techniques from single sequence RNA structure prediction. The input here is a set of aligned RNA sequences, to which a shape ab...
متن کاملPARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints...
متن کاملPreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars
Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 14 8 شماره
صفحات -
تاریخ انتشار 1998